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Abstract—Deep-learning methods (especially convolutional
neural networks) using structural magnetic resonance imaging
(sMRI) data have been successfully applied to computer-aided
diagnosis (CAD) of Alzheimer’s disease (AD) and its prodromal
stage [i.e., mild cognitive impairment (MCI)]. As it is practi-
cally challenging to capture local and subtle disease-associated
abnormalities directly from the whole-brain sMRI, most of those
deep-learning approaches empirically preselect disease-associated
sMRI brain regions for model construction. Considering that
such isolated selection of potentially informative brain locations
might be suboptimal, very few methods have been proposed to
perform disease-associated discriminative region localization and
disease diagnosis in a unified deep-learning framework. However,
those methods based on task-oriented discriminative localization
still suffer from two common limitations, that is: 1) identified
brain locations are strictly consistent across all subjects, which
ignores the unique anatomical characteristics of each brain and
2) only limited local regions/patches are used for model train-
ing, which does not fully utilize the global structural information
provided by the whole-brain sMRI. In this article, we propose an
attention-guided deep-learning framework to extract multilevel
discriminative sMRI features for dementia diagnosis. Specifically,
we first design a backbone fully convolutional network to auto-
matically localize the discriminative brain regions in a weakly
supervised manner. Using the identified disease-related regions as
spatial attention guidance, we further develop a hybrid network
to jointly learn and fuse multilevel sMRI features for CAD model
construction. Our proposed method was evaluated on three pub-
lic datasets (i.e., ADNI-1, ADNI-2, and AIBL), showing superior
performance compared with several state-of-the-art methods in
both tasks of AD diagnosis and MCI conversion prediction.

Index Terms—Alzheimer’s disease (AD), convolutional neural
networks (CNNs), multilevel feature learning, structural MRI,
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I. INTRODUCTION

STRUCTURAL magnetic resonance imaging (sMRI) is
an important tool in Alzheimer’s disease (AD) diag-

nosis, since it is sensitive to dementia-induced anatomical
abnormalities in the brain [1]. Capitalizing on sMRI data,
various machine-learning approaches [2]–[12] and modern
deep-learning methods [13]–[23] have been proposed for
computer-aided diagnosis (CAD) of AD and its prodromal
stage [i.e., mild cognitive impairment (MCI)]. Typically, there
are three basic steps in constructing a CAD system based
on sMRI data [24], including: 1) regions-of-interest (ROIs)
identification from the whole-brain sMRI; 2) feature extrac-
tion from ROIs; and 3) classifier construction based on sMRI
features.

Conventional machine-learning methods [2]–[12], [25]–[27]
typically perform these three steps separately. They first prede-
termine possibly informative ROIs (e.g., coarse brain regions
or local image patches) according to domain-specific prior
knowledge, and then extract handcrafted features from these
ROIs to train classification models. Recently, deep-learning
methods [13]–[18], [20], [21] have also been proposed for
AD-related brain disease diagnosis using sMRI scans, in
which feature extraction and classifier construction are uni-
fied to learn high-level features in a task-oriented manner.
Although these deep-learning methods greatly improve diag-
nostic performance, they have a common limitation with the
traditional machine-learning methods using handcrafted fea-
tures. That is, the independent preidentification of ROIs (e.g.,
coarse brain regions [17] or local image patches [18]) might
not be well coordinated with the latter steps of feature extrac-
tion and classifier construction, thus leading to suboptimal
performance.

To tackle this limitation, in a more recent work [22], a hier-
archical fully convolutional network (H-FCN) was proposed
to jointly identify multiscale discriminative locations in brain
sMRI scans and learn high-level sMRI features for construct-
ing a hierarchical diagnostic model, which yielded state-of-
the-art diagnostic performance, especially in the challenging
task of MCI conversion prediction (i.e., whether subjects with
MCI would convert to AD within a certain period). However,
since H-FCN relies on location proposals that are anatomically
consistent across all subjects for discriminative localization
and disease diagnosis [22], it still has two inherent disad-
vantages. First, similar to predetermined ROIs used in the
previous CAD approaches for AD diagnosis, the multiscale
(i.e., patch and region level) discriminative locations identified
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Fig. 1. Illustration of our proposed attention-guided deep-learning framework
to automatically extract and integrate multilevel discriminative information
from the whole-brain sMRI scans for dementia diagnosis. In the first stage,
a backbone FCN is designed for task-oriented localization of discriminative
regions in each input sMRI scan, yielding a DAM. In the second stage, with
the identified DAM as guidance, we further develop a multibranch hybrid
network for dementia diagnosis. In a DAM, the red and blue colors denote
strong and weak discriminative capability, respectively.

by H-FCN are consistent across all subjects. This implies
that H-FCN has the same assumption as traditional methods,
that is, different subjects have a common set of potentially
informative ROIs. Therefore, these methods ignore the fact
that, for different individuals, the AD-associated brain atro-
phy may occur at different brain locations or have different
degrees of severity in certain brain regions. Second, similar
to some other conventional learning methods [8] and deep-
learning methods [18], H-FCN employs local image patches
as network inputs, thus quantifying global information of
the whole brain by integrating local information provided by
limited image patches. Notably, a network pruning strategy
is used in H-FCN to directly remove uninformative or less
informative image patches and brain regions, ignoring the
fact that those pruned patches/regions could contain supple-
mentary information (when combined with other distinctive
patches/regions) for robust model training. That is, H-FCN
using only pruned image patches (although integrated later by
the network) may result in incomplete quantification of global
information for each brain sMRI; thus, it is highly desired to
directly employ global structural information of the brain to
boost the diagnostic performance.

In this article, we propose an attention-guided deep-learning
framework to integrate multilevel (i.e., intersubject consis-
tent and individual specific, and local and global) sMRI
information for brain disease diagnosis. Using directly the
whole-brain sMRI as input, the schematic of our CAD frame-
work is illustrated in Fig. 1. In the first stage, a backbone
fully convolutional network (FCN) is trained using solely the
subject/image-level supervision (i.e., class labels) for weakly
supervised detection of disease-related discriminative loca-
tions [i.e., generation of disease attention maps (DAMs)] in
each individual (whole-brain) sMRI. Guided by task-oriented
DAMs, in the second stage, a multibranch hybrid network
(HybNet) is built on the input sMRI as well as the intermediate
feature maps of the backbone FCN for brain disease diagno-
sis. Especially, besides using the local structure information
conveyed in image patches, we apply a lightweight convolu-
tional neural network (CNN) on the backbone feature map of
each subject, spatially weighted by its corresponding DAM, to
directly capture both global and individual-specific discrimina-
tive information. We evaluated our proposed method for both
the tasks of AD classification and MCI conversion prediction
on three datasets, including AD Neuroimaging Initiative-1
(ADNI-1), ADNI-2, and Australian Imaging, Biomarker and
Lifestyle Flagship Study of Aging (AIBL). Experimental

results demonstrate that our proposed method performs well
in both discriminative localization and brain disease diag-
nosis, compared with several baseline and state-of-the-art
methods.

The remainder of this article is organized as follows. In
Section II, we briefly review related work on automated AD
diagnosis using sMRI data. In Section III, we introduce the
studied datasets (i.e., ADNI-1, ADNI-2, and AIBL) as well
as the data preprocessing pipeline. The proposed method is
described in detail in Section IV. In Section V, we present the
experimental settings, competing methods, and experimental
results. We finally conclude this article and briefly discuss the
limitations of our current work in Section VII.

II. RELATED WORK

In terms of the ROIs for feature extraction and classi-
fier construction, existing methods for AD diagnosis were
usually constructed based on voxel-level, region-level, and/or
patch-level pattern analyses. In this section, we briefly review
conventional learning approaches as well as deep-learning
approaches in the literature that perform AD diagnosis using
primarily different scales of sMRI features.

A. Conventional Learning Approaches

Conventional learning approaches typically predetermine
ROIs to extract handcrafted features (e.g., brain tissue den-
sity map, textural features, and shape features) to construct
AD diagnostic models. Using the whole brain (i.e., all voxels
in an sMRI) as input, some methods adopt voxel-level feature
representations to train classifiers for differentiating between
patients and normal controls (NCs). For example, based on
voxel-based morphometry (VBM) [28], [29], the gray matter
(GM) density map was quantified in [3] and [4] to construct a
linear programming boosting (LPboosting) classifier [30] and
a linear support vector machine (SVM) classifier [31] for AD
diagnosis, respectively.

Another commonly used strategy is to preselect one or
multiple brain regions according to anatomical prior knowl-
edge, and then extract regional sMRI features for the con-
struction of a diagnostic model. For example, in [2] and [10],
the left and right hippocampi were preidentified from sMRI to
extract shape and textural features for AD diagnosis, respec-
tively. By parcellating the whole-brain sMRI into multiple
nonoverlapping regions, regional GM volumes were quantified
in [5] to train SVM classifiers for AD and MCI classification.
Based on anatomical prior knowledge provided by multiple
atlases, [6] and [9] extracted multitemplate regional features
to construct ensemble classifiers for AD classification and MCI
conversion prediction.

Alternatively, considering that structural changes induced
by the early stage of AD (e.g., MCI) could be subtle, some
methods were proposed to extract features from local image
patches. For example, based on local patches extracted at the
locations of hippocampus and entorhinal cortex, a previous
study [7] defined volumetric and grading biomarkers for AD
classification and MCI conversion prediction. In [8], a multiple
instance learning (MIL) model [32] was trained to combine the
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information provided by a set of local patches for AD classifi-
cation and MCI conversion prediction. By defining AD-related
anatomical landmarks, Zhang et al. [11] extracted morpholog-
ical features from local patches centered at these landmarks to
train SVM classifiers for AD and MCI classification. The key
issue for these conventional learning approaches is that the
independent extraction of handcrafted features and construc-
tion of classifiers may hamper the diagnostic performance, due
to potential heterogeneity between these two steps.

B. Deep-Learning Approaches

Various deep-learning approaches have also been proposed
for AD diagnosis [13]–[18], [20]–[22], [33]–[35], among
which CNNs were commonly used to extract task-oriented
features from sMRI for constructing diagnostic models.

As it is challenging to capture subtle structural changes from
the whole brain using directly an end-to-end network with-
out any guidance, similar to conventional learning methods,
most of the existing CNN-based diagnostic models require the
predetermination of potentially informative ROIs according to
domain knowledge and experts’ experience. For example, the
sMRI hippocampal regions were coarsely extracted in [15]
to train a residual network [36] for the multicategory diag-
nosis of AD. In [18], CNN-based deep MIL models were
constructed using local image patches preidentified by anatom-
ical landmarks for AD classification and MCI conversion
prediction. In [21], local image patches were extracted from
both sMRI and positron emission tomography (PET) scans to
construct cascaded CNNs for AD and MCI classification.

Considering that preselection of ROIs isolated to CNN-
based feature extraction and classifier construction might not
be an optimal solution, a hierarchical FCN (H-FCN) was
proposed in [22] to integrate the ROI identification, feature
extraction, and classifier construction into a unified task-
oriented framework. Specifically, based on the patch-level
location proposals widely distributed over the whole brain,
H-FCN automatically identified multiscale (i.e., patch level
and region level) discriminative locations to construct a hier-
archical diagnostic model for AD classification and MCI
conversion prediction. However, the H-FCN method employed
a network pruning strategy to directly remove uninformative
and less informative image patches and brain regions, ignoring
the fact that those pruned patches/regions could contain sup-
plementary information for robust model training. This may
result in incomplete quantification of global brain structure
information, leading to suboptimal diagnostic performance.

III. MATERIALS

A. Data

Three public datasets with 1976 baseline sMRI scans
were studied in this work, including: 1) AD Neuroimaging
Initiative-1 (ADNI-1) [37]; 2) ADNI-2 [37]; and 3) Australian
Imaging, and Biomarker and Lifestyle Flagship Study of
Aging (AIBL) [38]. The demographic information of the
subjects included in these three datasets is summarized in
Table I.

TABLE I
BASELINE DEMOGRAPHIC INFORMATION OF SUBJECTS INCLUDED IN THE

THREE PUBLIC DATASETS (I.E., ADNI-1, ADNI-2, AND AIBL). THE

GENDER IS PRESENTED AS MALE/FEMALE. THE AGE, EDUCATION

YEARS, AND MMSE SCORES ARE PRESENTED AS MEAN ± STANDARD

DEVIATION (STD)

ADNI-1: The baseline ADNI-1 dataset consists of 1.5T
T1-weighted sMRI scans acquired from totally 821 subjects.
These subjects were divided into three categories (i.e., NC,
MCI, and AD) in terms of the standard clinical criteria, includ-
ing mini-mental state examination (MMSE) scores and clinical
dementia rating. According to whether MCI subjects would
convert to AD within 36 months after the baseline evalua-
tion, the MCI subjects were further specified as stable MCI
(sMCI) subjects that were always diagnosed as MCI at all
time points (0–96 months), or progressive MCI (pMCI) sub-
jects that finally converted to AD within 36 months after the
baseline. To summarize, the baseline ADNI-1 dataset contains
229 NC, 226 sMCI, 167 pMCI, and 199 AD subjects.

ADNI-2: The baseline ADNI-2 dataset includes 3T T1-
weighted sMRI data acquired from 637 subjects. According
to the same clinical criteria as those used for ADNI-1, these
637 subjects were further categorized as 201 NC, 239 sMCI,
38 pMCI, and 159 AD subjects. It is worth noting that to make
sure ADNI-2 is independent of ADNI-1, subjects that appear
in both ADNI-1 and ADNI-2 were removed from ADNI-2.
Four demographic factors, including gender, age, education
years, and MMSE scores, are available for all subjects in both
ADNI-1 and ADNI-2.

AIBL: The baseline AIBL dataset consists of 1.5T or 3T T1-
weighted sMRI scans acquired from 519 subjects, where 72
subjects were diagnosed as AD and the remaining 447 subjects
are NCs. Three demographic factors, including gender, age,
and MMSE scores, are available for all subjects in AIBL.

B. Image Preprocessing

We preprocessed all sMRI scans using a standard pipeline.
Specifically, the anterior commissure (AC)–posterior commis-
sure (PC) correction was performed first using the MIPAV
software.1 Then, the intensity correction of the sMRIs was
performed using the N3 algorithm [39]. The brain skull and
dura were stripped by the BET method [40] in the FSL pack-
age [41], and the cerebellum was further removed by warping
a labeled template to each skull-stripped image. The FLIRT
method [42] in the FSL package was used to linearly align

1http://mipav.cit.nih.gov/index.php

Authorized licensed use limited to: University of Southern California. Downloaded on October 27,2020 at 20:40:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 2. Architecture of the backbone FCN for weakly supervised discrimi-
native localization on 3-D sMRI (size: 144 × 184 × 152), where Conv, GAP,
and FC stand for convolutional, GAP, and fully connected layers, respectively.
The number of channels (e.g., 16), kernel size (e.g., 3 × 3 × 3), and stride
(e.g., 1) in each Conv layer is shown as “16@3 × 3 × 3 -1.”

all sMRIs to the Colin27 template [43] to remove global lin-
ear difference and also to resample all images for having an
identical spatial resolution (i.e., 1×1×1 mm3). Finally, all lin-
early aligned sMRIs were cropped to have the identical size of
144×184×152, during which only uninformative backgrounds
were removed and all the brain structures were completely
preserved without loss of any potentially useful information.

IV. METHOD

As shown in Fig. 1, we propose an attention-guided
deep-learning framework to capture multilevel discriminative
knowledge from the whole-brain sMRI for automated brain
disease diagnosis. We first design an FCN as the backbone to
generate DAM for each input brain image, using directly the
subject-level class label (e.g., AD/NC) as weakly supervised
localization guidance. Each DAM has the same spatial reso-
lution as the input sMRI scan, and each element represents
the discriminating power of the corresponding voxel for dis-
ease diagnosis. Using the DAMs as guidance, a multibranch
HybNet is constructed on the input sMRIs and the intermediate
feature maps of the backbone FCN to fuse multilevel sMRI
features for AD classification or MCI conversion prediction.

A. Generation of Disease Attention Map

In the first stage, a backbone FCN is trained for weakly
supervised discriminative localization, using the whole-brain
sMRI (size: 144 × 184 × 152) as the input and the subject’s
class label (e.g., AD/NC) as the ground truth. Fig. 2 shows the
architecture of our FCN, which consists of 12 convolutional
(Conv) layers, a global average pooling (GAP) layer, and a
classification (i.e., fully connected, FC) layer. All Conv layers
use 3×3×3 kernels (e.g., Conv1 and Conv2), 2×2×2 kernels
(e.g., Conv3), or 1 × 1 × 1 kernels (i.e., Conv12) with zero
padding, followed by batch normalization (BN) and rectified
linear unit (ReLU) activation. The stride for the 3 × 3 × 3
and 1 × 1 × 1 kernels is set as 1, while the stride for the
2 × 2 × 2 kernels (i.e., Conv3, Conv6, and Conv9) is set as 2
to halve the size of output feature maps. The last Conv layer
with 1×1×1 kernels (i.e., Conv12) is included to squeeze the
number of channels. The numbers of channels for Conv1 to
Conv11 are 16, 16, 16, 32, 32, 32, 64, 64, 64, 128, 128, and 64,
respectively. On the feature maps yielded by Conv12, a GAP
operation is performed to produce a feature vector, which is
further used in the last FC layer (with softmax activation) to

predict the probability score of the input sMRI belonging to
a specific category. Notably, the bias is removed from the FC
layer for task-oriented localization after network training.

Inspired by [44], we backpropagate the learned weights of
the classification layer onto the top Conv feature maps to
generate a spatial DAM for respective sMRI. Such DAMs
highlight discriminative brain regions that are highly asso-
ciated with the diagnostic task. Specifically, let the feature
maps yielded by Conv12 be {F1, . . . , FM}, where each Fm

(m = 1, . . . , M) has the size of (X/8) × (Y/8) × (Z/8) with
X × Y × Z (i.e., 144 × 184 × 152) be the size of the input
sMRI, and M = 64 is the number of channels. Based on the
FC weights (i.e., [wc

1, . . . , wc
M]T ) learned for the cth class (e.g.,

AD), the corresponding DAM (i.e., Ac) is defined as

Ac(x, y, z) =
M∑

m=1

wc
mFm(x, y, z). (1)

Determined by the GAP operation and the FC operation
without bias, the DAM correlates strongly with the diagnos-
tic task, considering that the classification score sc (before
softmax and normalization) has the form of

sc =
M∑

m=1

wc
m

∑

x,y,z

Fm(x, y, z) =
∑

x,y,z

Ac(x, y, z). (2)

Finally, the DAMs quantified by (1) for different classes are
aggregated as

A(x, y, z) =
∑

c

scAc(x, y, z) (3)

which is simply upsampled via linear interpolation to obtain
voxelwise attention map for the whole-brain sMRI.

B. Attention-Guided Hybrid Network

The DAM produced in the first stage can provide criti-
cal guidance for discriminative localization of subject specific
global brain atrophies induced by dementia, especially consid-
ering that it is practically challenging to directly capture local
and subtle structural abnormalities from a whole-brain sMRI.
On the other hand, by aggregating the DAMs for consider-
able samples in the training set, it also implies a potentially
effective way to identify intersubject-consistent discrimina-
tive atrophy locations across different sMRIs. We assume that,
since the discriminative knowledge extracted from subject spe-
cific and intersubject-consistent DAMs are oriented by the
unique diagnostic task, these two kinds of attention maps
should be supplements/enhancements to each other. Based on
this assumption, in the second stage, we propose an attention-
guided HybNet to integrate multilevel discriminative sMRI
features for AD diagnosis. The architecture of our HybNet
consists of a global branch (GB), a local branch (LB), and a
fusion branch, as shown in Fig. 3.

1) Global Branch: The GB attempts to capture subject-
specific discriminative information at the global whole-image
level. To this end, the intermediate feature maps of the
FCN (i.e., Conv11 in Fig. 2) are reused, considering that
they already encode the raw global information automatically
extracted from the whole-brain sMRI for the diagnostic task.
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Fig. 3. Architecture of our proposed attention-guided HybNet to learn multilevel discriminative sMRI features for dementia diagnosis. Our HybNet consists
of a GB, an LB, and a fusion branch. The GB applies a lightweight CNN on the backbone feature map of each subject, spatially weighted by the corresponding
DAM, to capturing global and individual-specific discriminative information. In the LB, using local maxima on the mean DAM of the training set as location
proposals, an H-FCN [22] is applied on a set of image patches extracted from the input sMRI to capturing local and intersubject-consistent discriminative
information. In H-FCN, multiple PSNs share the same network parameters across different patch locations. To further control the number of learnable
parameters, the GAP is used in the local and GBes for capturing 1-D feature representations. Finally, the high-level feature representations produced by the
local and global branches are further combined in the fusion branch to yield higher level features for brain disease diagnosis.

As the input for the GB, these image-level feature maps are
spatially weighted by the corresponding DAM (via voxelwise
multiplication) across channels to amplify the influence of
input features for potentially informative brain regions. After
the voxelwise local enhancement, they are further processed
by two additional Conv layers [i.e., ConvG1 and ConvG2
in Fig. 3] to learn more discriminative feature maps. Both
ConvG1 and ConvG2 adopt 3 × 3 × 3 kernels, followed
by BN and ReLU, with the numbers of channels set as
64 and 32, respectively. Finally, a GAP layer is attached
on the ConvG2 layer to produce the global whole-image-
level representations encoding subject-specific discriminative
information.

2) Local Branch: Determined by the input (i.e., the spa-
tially weighted Conv11 feature maps of the backbone FCN),
the GB in our HybNet can only learn global whole-image-level
feature representations with limited local description. Also, as
the DAMs are quantified independently for each input brain
image, the subject-specific discriminative information captured
by the proposed GB might be unstable for disease diagno-
sis [see Fig. 4(b)]. To tackle these limitations, our HybNet
includes another branch (i.e., the LB) to extract local discrim-
inative information at the patch level, considering that the early
stage of AD may first cause subtle structural changes at very
local brain regions. This LB is built on informative patch loca-
tions that are spatially consistent across different sMRIs, and
thus should be a stable complement to the subject-specific GB.

As shown in Fig. 3, the structure of the LB in our HybNet
is in line with H-FCN [22], which is actually a hierarchical
network sequentially merging multiscale sMRI features pro-
vided by different patches and regions for the diagnostic task.
The input for the LB is multiple 3-D image patches (size:
25 × 25 × 25) extracted from the linearly aligned sMRI scan.
Each patch location corresponds to a subnetwork (i.e., the right
part in Fig. 3), and all patch-level subnetworks (PSNs) share

the same architecture and weights to limit the number of learn-
able parameters. Spatially neighboring patches are grouped as
a specific brain region (or second-level patches), and the out-
puts of the corresponding PSNs (size: 1 × 1 × 1 × 64) are
concatenated according to their spatial relationship to form the
input (e.g., 2 × 2 × 2 × 64 tensor) for the construction of the
subsequent region-level subnetwork. Each region-level subnet-
work consists of a specific Conv layer with 64 channels (i.e.,
ConvR-64 in Fig. 3) and a subsequent GAP layer to produce
the region-level feature representation (size: 1×1×1×64). All
region-level subnetworks are concatenated in a channelwise
fashion, followed by two Conv layers (i.e., ConvS1-64 and
ConvS2-32 in Fig. 3) with 64 and 32 channels, respectively.
A GAP layer is further employed to produce the final fea-
ture representation in the LB, encoding intersubject consistent
discriminative information from local patches and regions.

Compared with H-FCN [22], the most critical difference of
the LB in our HybNet method lies in the definition of the
initial inputs (i.e., location proposals). Instead of using local
patches that are widely distributed over the whole-brain image
as network input, in this study, we select location proposals in
a more efficient data-driven way. That is, based on the mean
DAM of the training samples in the linearly aligned image
space, we first select voxels with the mean DAM values higher
than a predefined threshold (set as 0.3 in our implementation)
as potential patch locations. Then, we further require that the
distance between any two feasible patch locations should not
be less than 25 voxels, and use the qualified candidates as the
central points to extract image patches (size: 25 × 25 × 25).
Considering that the DAM is spatially sparse and strongly cor-
relates with the diagnostic task, the LB in our HybNet requires
less location proposals than H-FCN. Also, since the mean
DAM defined on the training set [e.g., Fig. 4(c)] is relatively
more robust than subject-specific DAMs [e.g., Fig. 4(b)], the
corresponding patch locations defined on the mean DAM [e.g.,
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Fig. 4. 2-D illustration of a (a) testing subject in ADNI-2 and (b) corre-
sponding subject-specific DAM generated by the backbone FCN trained on
ADNI-1. Besides, (c) and (d) present the mean DAM generated on training
subjects in ADNI-1 and the resulting intersubject-consistent patch locations,
respectively.

Fig. 4(d)] not only are intersubject consistent but also could
be more robust to imaging noise.

3) Fusion Branch: Finally, the subject-specific global dis-
criminative features (i.e., the output of the GB) are con-
catenated with the intersubject-consistent local discriminative
features (i.e., the output of the LB). They are further fused via
two subsequent FC layers (i.e., FCF1 and FCF2 with 64 and
32 units, respectively) followed by ReLU activations to learn a
holistic multilevel feature representation with higher discrim-
inative power, based on which the diagnosis of the respective
subject is performed by the ultimate softmax classification
layer.

C. Implementation Details

The proposed attention-guided deep-learning diagnostic
model was implemented in 3-D on a single GPU (i.e., NVIDIA
GTX TITAN 12 GB), using Python based on the Keras pack-
age.2 In the first stage, the input of our backbone FCN
is the linearly aligned whole-brain sMRI with the size of
144 × 184 × 152. We trained the FCN by setting the mini-
batch size as 2 and applying 0.5 dropout to multiple Conv
layers. The model was trained by the cross-entropy loss with
the Adam optimizer. The training set was augmented online by
the combination of 1) randomly rescaling the brain images in
a very small range and 2) randomly flipping the brain images
in the axial plane.

In the second stage, the input of our HybNet includes:
1) the intermediate FCN (i.e., Conv11) feature maps spatially
enhanced by the respective DAM (size: 18×23×19×128) and
2) a set of local patches (size: 25×25×25) identified from the
whole-brain image. As the initial patch locations were deter-
mined by a data-driven strategy (i.e., based on the mean DAM
for all training samples), the size of the input patch set depends
on the training data. For example, using ADNI-1 to train the
models for AD diagnosis and MCI conversion prediction, the
number of location proposals (i.e., initial patches) used in the
LB of our HybNet was 36 and 33, respectively. The HybNet
was trained with a deep-supervision strategy. The global and
local branches of HybNet were first trained independently.

2https://github.com/fchollet/keras

That is, the GB was trained with the cross-entropy loss, using
the Adam optimizer. And then the LB was trained in a sim-
ilar way as the implementation of H-FCN in [22], including
an initial training step and a network pruning step. After that,
both the local and global branches were kept frozen to fur-
ther update the fusion branch, using the cross-entropy loss
and Adam optimizer. During training, the mini-batch size was
set as 5, and 0.5 dropout was activated for multiple layers.
The training samples were augmented online by the combina-
tion of 1) adding the Gaussian noise to the input feature maps
and 2) randomly shifting at each patch location within a small
neighborhood to extract input image patches.

Two different tasks were studied in this article, including
AD diagnosis (i.e., AD versus NC classification) and MCI
conversion prediction (i.e., pMCI versus sMCI classification).
We first trained our proposed model for AD diagnosis, and
then transferred the learned parameters to initialize the training
of our proposed model for MCI conversion prediction, mainly
considering that these two tasks are highly correlated and the
latter task is relatively more challenging.

V. EXPERIMENTS

A. Experimental Settings

To evaluate the generalization capability of different meth-
ods, in the experiments, we train classification models on
ADNI-1, and evaluate them on the two independent datasets,
including ADNI-2 and AIBL. The diagnostic performance was
quantitatively evaluated in terms of four criteria, that is, accu-
racy (ACC), sensitivity (SEN), specificity (SPE), and area
under the receiver operating characteristic curve (AUC).

We first compare our proposed HybNet method with
two baseline methods, including the region-based method
(ROI) [5] and the VBM method [28]. Besides, we fur-
ther compare HybNet with two state-of-the-art deep-learning
methods, including the deep multi-instance learning (DMIL)
method [18] and the hierarchical FCN (H-FCN) method [22].
The details of these four competing methods are introduced
as follows.

1) Region-Based Method: The ROI method used region-
level handcrafted features to construct SVM classifiers.
Specifically, in line with [5], we first applied the FAST algo-
rithm [45] in the FSL package3 to segment the whole-brain
sMRI into GM, white matter (WM), and cerebrospinal fluid
(CSF). Using the HAMMER algorithm [46], we then warped
the anatomical automatic labeling (AAL) atlas onto each sub-
ject to define 90 ROIs. Finally, we quantified the normalized
GM volume in each ROI and concatenated them as the features
to train linear SVM classifiers based on the training data.

2) Voxel-Based Morphometry: The VBM method used
voxel-level handcrafted features quantified from the whole-
brain sMRI to construct SVM classifiers. Following [28],
we spatially normalized each sMRI scan onto the Colin27
template [43] to extract voxelwise GM density as features.
After that, the dimensionality of these voxelwise features was
reduced by performing statistical group comparison. Finally,

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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TABLE II
RESULTS OF AD VERSUS NC CLASSIFICATION ON ADNI-2 AND AIBL, RESPECTIVELY, OBTAINED BY THE MODELS TRAINED ON ADNI-1

we constructed linear SVM classifiers using the selected
features.

3) Deep Multi-Instance Learning: The DMIL method con-
structed a CNN-based multi-instance model on a set of local
image patches. In line with [18], we selected the top 40 AD-
related anatomical landmarks from the landmark pool [11].
Using these landmarks as the central points, we extracted
24 × 24 × 24 patches, and each of them was processed by
a CNN to obtain a set of patch-level feature representations.
Finally, we concatenated all patch-level features, and attached
FC layers on them to train softmax classifiers.

4) Hierarchical Fully Convolutional Network: The H-FCN
method automatically identified multiscale discriminative loca-
tions to construct a hierarchical model for AD diagnosis.
Specifically, nonlinear registration was performed first to
establish anatomical correspondence across linearly aligned
subjects for defining 120 location proposals widely distributed
over the whole brain (i.e., to cover all potentially discrimina-
tive locations). Then, a set of 25×25×25 patches was extracted
as the input to train an initial H-FCN. We further refined the
trained network by pruning the subnetworks to directly remove
those uninformative patches and regions.

It is worth noting that both the two state-of-the-art deep-
learning methods (i.e., DMIL and H-FCN) require much more
learnable parameters than our HybNet method. Specifically,
DMIL contains more than 37 million learnable parame-
ters, since the 40 different patch locations have their own
specific subnetworks. H-FCN shares the PSNs across 120
location proposals to control network complexity, resulting in
nearly 3 883 930 learnable parameters for the initial network.
Compared with H-FCN, our HybNet requires much fewer
location proposals for the LB (i.e., 36 for AD diagnosis and 33
for MCI conversion prediction), due to which the whole num-
ber of learnable parameters is further reduced to be less than
1 750 000 for the initial network (including the local, global,
and fusion branches).

B. Results of AD Diagnosis

In this group of experiments, we compare our HybNet
method with four competing methods in the task of AD ver-
sus NC classification. We trained the models on ADNI-1 (in
which 10% subjects were randomly split for validation), and
then applied them to diagnosing the subjects from ADNI-2
and AIBL, respectively. The quantified classification results
in terms of four different metrics (i.e., ACC, SEN, SPE, and
AUC) are summarized in Table II.

TABLE III
RESULTS OF PMCI VERSUS SMCI CLASSIFICATION ON ADNI-2,

OBTAINED BY THE MODELS TRAINED ON ADNI-1

From Table II, we have at least the following three
observations. First, compared with the conventional machine-
learning approaches (i.e., ROI and VBM), the deep-learning
approaches (i.e., DMIL, H-FCN, and our HybNet) largely
improved the diagnostic performance on both ADNI-2 and
AIBL datasets, which demonstrates the significance of learning
high-level sMRI features for AD diagnosis. Second, compared
with DMIL that adopted predetermined informative loca-
tions to construct deep networks, the other two deep-learning
approaches (i.e., H-FCN and HybNet) based on task-oriented
discriminative localization led to competitive or even better
diagnostic performance. For example, our proposed HybNet
outperformed DMIL in terms of all metrics on the ADNI-2
dataset. It implies that integrating discriminative localization,
feature extraction, and classifier construction into a unified
deep-learning framework is feasible and beneficial for auto-
mated AD diagnosis. Third, compared with H-FCN, our
proposed HybNet method yielded better AD classification
results on both two datasets. For example, on the ADNI-
2 dataset, the ACC and AUC values were improved from
0.903 to 0.919 and 0.951 to 0.965, respectively. It indicates
that the combination of multilevel (i.e., subject specific and
intersubject consistent, and global and local) discriminative
sMRI information in our HybNet method is beneficial for
the diagnostic task, compared with identifying solely local
image patches that are anatomically consistent across different
subjects H-FCN.

C. Results of MCI Conversion Prediction

In this group of experiments, our HybNet method as well
as the other four competing methods were evaluated on pMCI
versus sMCI classification. The models trained on ADNI-1
were applied to classifying the subjects from ADNI-2, with
the classification results presented in Table III. From Table III,
we can draw a similar conclusion as that in Section V-B.
That is, the DMIL, H-FCN, and our HybNet methods still
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(a)

(b)

Fig. 5. Results of (a) AD diagnosis and (b) MCI conversion prediction on the
ADNI-2 dataset, obtained by the first-stage FCN, the global branch (i.e., GB)
of HybNet, the local branch (i.e., LB) of HybNet, and the complete HybNet
trained on the ADNI-1 dataset, respectively.

(a) (b)

Fig. 6. ROC curves for (a) AD diagnosis and (b) MCI conversion prediction
on the ADNI-2 dataset, obtained by the first-stage FCN, the global branch
(i.e., GB) of HybNet, the local branch (i.e., LB) of HybNet, and the complete
HybNet trained on the ADNI-1 dataset, respectively.

largely outperformed the ROI and VBM methods, suggest-
ing that automatically learning high-level sMRI features in a
task-oriented deep-learning framework is also beneficial for
MCI conversion prediction. On the other hand, refer to the
results presented in both Tables II and III, we can observe that
the two deep-learning methods capitalizing on automated dis-
criminative localization (i.e., H-FCN and our HybNet) led to
more significant improvement of classification performance in
the challenging task of MCI conversion prediction, compared
with DMIL using predetermined discriminative locations. For
example, by comparing DMIL with our HybNet method,
the ACC was increased from 0.769 to 0.827 and the AUC
was increased from 0.776 to 0.793. It potentially implies
that task-oriented detection of discriminative atrophy loca-
tions is relatively more important in developing CAD methods
for the early stage of AD. Besides, from Table III, we
can observe that HybNet still yielded better classification
performance than H-FCN, which is in consistent with the
results presented in Table III. It further verifies the effective-
ness of learning multilevel discriminative sMRI features in the
more challenging task of MCI conversion prediction.

D. Ablation Study

In this group of experiments, we performed an ablation
study to evaluate the effectiveness of several essential com-
ponents of our proposed CAD model, including: 1) the
weakly supervised attention mechanism; 2) the GB in our
HybNet to capture global and subject-specific discriminative
information; 3) the LB in our HybNet to capture local and
intersubject-consistent discriminative information; and 4) the
fusion of multilevel discriminative information in our HybNet.
Specifically, on AD diagnosis as well as MCI conversion
prediction, we applied our FCN, the GB of our HybNet, the LB
of our HybNet, and our complete HybNet trained on ADNI-1
to classifying the subjects from ADNI-2. The classification
results in terms of ACC, SEN, SPE, and AUC are summa-
rized in Fig. 5, and the corresponding ROC curves are shown
in Fig. 6.

Based on Figs. 5 and 6, we can have the following obser-
vations. First, our HybNet method, as well as its components
(i.e., GB and LB), consistently outperformed our FCN model.
For example, compared with FCN, GB and LB improved the
ACC from 0.704 to 0.747 and 0.780, and also improved the
AUC from 0.740 to 0.758 and 0.749, respectively. It implies
that: 1) the DAMs produced by FCN in the first stage of the
proposed CAD model could provide effective guidance for dis-
criminative localization of disease-related brain regions, as it
is actually challenging in practice to train a classifier using
directly the whole-brain sMRI without any guidance (such
as in our FCN) and 2) the global and subject-specific sMRI
features learned by GB, as well as the local and intersubject-
consistent sMRI features learned by LB is discriminative for
the diagnostic tasks. Second, the complete HybNet led to better
performance than GB and LB in both two tasks, for example,
the classification results in terms of all criteria were improved
due to the fusion of multilevel sMRI features. It indicates that
the discriminative information provided by GB and LB are
complementary to each other, and the fusion of them to learn
holistic multilevel sMRI features are desired for the diagnostic
tasks.

E. Identified Disease Attention Maps

Our proposed method can automatically identify discrimi-
native brain regions from the whole-brain sMRIs by learning
task-oriented DAMs (i.e., Section IV-A). In Figs. 7 and 8, we
present some example DAMs (for the test subjects in ADNI-2)
generated by the FCN models constructed in the tasks of AD
versus NC classification and pMCI versus sMCI classifica-
tion, respectively, where each DAM is shown in 2-D from
two different views.

From Figs. 7 and 8, we can have the following obser-
vations. First, our proposed method consistently highlighted
multiple parts at the locations of the hippocampus, frontal lobe,
fusiform gyrus, amygdala, and ventricle for different subjects
with AD or MCI. It suggests that the automated-localization
results yielded by our proposed methods are reliable, con-
sidering that the discriminative power of these brain regions
for dementia diagnosis has already been validated in previous
studies [1], [2], [5], [7]. Second, while the discriminative brain
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Fig. 7. Illustration of the DAMs for six test AD subjects in ADNI-2, which were generated by the weakly supervised FCN model trained on ADNI-1 in the
task of AD diagnosis.

Fig. 8. Illustration of the DAMs for six test MCI subjects in ADNI-2, which were generated by the weakly supervised FCN model trained on ADNI-1 in
the task of MCI conversion prediction.

Fig. 9. 2-D illustration of (a) two different AD subjects from ADNI-2,
(b) respective AD-related anatomical landmarks identified by [11], and (c)
respective DAMs produced by our proposed method.

regions (e.g., in Fig. 7) detected by our method are consistent,
they are not totally the same across different subjects, for
example, the same brain region may have been emphasized
differently. It implies that our proposed method is feasible
for individualized localization of brain atrophies associated
with AD/MCI, which should be a valuable property in prac-
tice. Third, by comparing Fig. 7 with Fig. 8, we can see that
the brain regions identified for AD diagnosis and MCI con-
version prediction are partially different, although they are
largely consistent, for example, the ventricular regions were
highlighted for some MCI subjects in Fig. 8. It is worth not-
ing that previous studies [1], [47] have shown that ventricular

enlargement is an important biomarker for analyzing the pro-
gression of AD, which in some sense implies that our proposed
method is effective in task-oriented discriminative localization
to predict the disease progression for at risk AD subjects.

We also compare the DAMs generated by our method with
the top-ranked (120) AD-related anatomical landmarks defined
by [11]. The corresponding 2-D illustrations for two different
ADNI-2 subjects are shown in Fig. 9. From Fig. 9, we can see
that the highlighted regions in our generated DAMs are largely
consistent with those regions covered by anatomical landmarks
defined in [11], which further verifies the effectiveness of our
method for task-oriented discriminative localization in sMRI-
based dementia diagnosis.

VI. DISCUSSION

A. Evaluation on Other Brain Diseases With sMRI

Apart from AD, the proposed method may also be used
for sMRI-based diagnosis of other brain diseases, for exam-
ple, Parkinson’s disease (PD) and autism spectrum disorder
(ASD). To verify the feasibility, we conducted several pre-
liminary experiments on two challenging public datasets, that
is, the Parkinson’s Progression Markers Initiative (PPMI) [48]
and National Database for Autism Research (NDAR) [49], for
PD and ASD diagnosis, respectively. Briefly, the PPMI dataset
consists of the T1-weighted sMR images acquired from 374
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Fig. 10. 2-D illustration of the DAMs produced by our proposed method on
(a) two different PD subjects from PPMI and (b) two different ASD subjects
from NDAR, respectively.

PD and 169 NC subjects, while the NDAR dataset consists of
the T1-weighted sMR images acquired from 61 Autism/ASD
and 215 NC subjects. The detailed demographic information of
these two datasets can be found in Section 1 (including Tables
S1 and S2) of the supplementary material. For each diagnostic
task, we randomly selected 10% subjects as the test set and
used the remaining 80% and 10% subjects as the training and
validation sets, respectively. In addition, considering the small
sizes of both PPMI and NDAR, we transferred the network
parameters learned on ADNI (for AD diagnosis) to initialize
the training of the networks for PD and ASD diagnosis. The
corresponding results on both tasks are presented in Table S3
of the supplementary material, suggesting that our method is
potentially feasible for other brain diseases.

In Fig. 10, we present some example DAMs generated
by our method in the tasks of PD versus NC classifica-
tion [i.e., Fig. 10(a)] and ASD versus NC classification
[i.e., Fig. 10(b)]. From Fig. 10, we can have the following
observations. First, the DAMs demonstrate large interdisease
differences and intradisease consistency, reliably uncovering
the fact that different brain diseases actually cause abnormal
changes at different brain locations. Second, the DAMs for
the same brain disease consistently highlighted some biolog-
ically meaningful brain regions. For example, in the task of
PD diagnosis [i.e., Fig. 10(a)], our method robustly highlighted
multiple parts at the locations of the brain stem and middle cin-
gulate gyrus. It further suggests the reliability of our method
in automated discriminative localization, considering that the
predictive value of those brain regions in PD diagnosis has
been validated by previous studies [50], [51].

B. Limitations and Future Work

While our proposed method performs well in automated
discriminative localization and disease diagnosis, several lim-
itations should be carefully addressed in the future to further
improve its performance and practical value. First, our current
model was implemented to perform discriminative localiza-
tion and disease diagnosis independently, which means the
diagnostic results in the second stage could not be used to
help refine the discriminative localization in the first stage.
It should be an interesting and promising direction to inte-
grate these two stages into a purely end-to-end framework,
so that the modules designed for both tasks could provide
complementary guidance to each other. Second, discriminative

locations detected by our current model are relatively coarse,
mainly due to the reason that the DAMs were defined on
high-semantic (but low-resolution) features maps from the top
convolutional layers of the backbone FCN. To generate higher-
resolution DAMs without loss of semantic information, we
could potentially extend our current model by using the top-
down strategy to combine high-semantic information (from
top layers) with local details (from bottom layers) for weakly
supervised discriminative localization at multiple scales. Third,
the intersubject-consistent patch locations used in the LB of
our HybNet model were relatively coarse, as they were deter-
mined by averaging the DAMs for training samples directly
in the linearly aligned image space. To define patch locations
more precisely, similar to [11] and [22], we could alternatively
identify the voxel-to-voxel anatomical correspondence across
all subjects via nonlinear registration [52] and then calculate
the mean DAM in a template space, which will be one of our
future work.

VII. CONCLUSION

In this work, an attention-guided deep-learning model was
proposed to automatically identify the AD-related abnor-
mal locations from the whole-brain sMRI, and then extract
multilevel discriminative sMRI features at these locations to
construct the classifiers for AD diagnosis. The effectiveness
of our proposed method has been evaluated on three public
datasets consisting of 1976 subjects. The experimental results
have demonstrated the superior performance of our method
compared with several state-of-the-art methods in both the
tasks of AD diagnosis and MCI conversion prediction.
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